
Mapping DSP Applications onto Self-timed Multiprocessors

S. S. Bhattacharyya, N. Bambha, M. Khandelia, and V. Kianzad
Dept. of Electrical and Computer Engineering, and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA
{ssb, nbambha, mukulk, vida}@eng.umd.edu
Abstract

Self-timed scheduling is an attractive implementation
style for multiprocessor DSP systems due to its ability to ex-
ploit predictability in application behavior, its avoidance of
over-constrained synchronization, and its simplified clock-
ing requirements. However, analysis and optimization of
self-timed systems under real-time constraints is challeng-
ing due to the complex, irregular dynamics of self-timed op-
eration. This paper examines a number of intermediate
representations for compiling dataflow programs onto self-
timed DSP platforms, and discusses efficient techniques
that operate on these representations to streamline schedul-
ing, communication synthesis, and power management of
self-timed implementations.

1 Background

Multiprocessor implementation of DSP applications in-
volves the interaction of several complex factors including
scheduling, interprocessor communication, synchroniza-
tion, iterative execution, and more recently, voltage scaling
for low power implementation. Addressing any one of these
factors in isolation is itself typically intractable in any opti-
mal sense; at the same time, with the increasing trend to-
ward multi-objective implementation criteria in the
synthesis of embedded software, it is desirable to under-
stand the joint impact of these factors. In this paper, we ex-
amine several high-level, intermediate representations that
have been developed to analyze and optimize various mul-
tiprocessor DSP implementation factors and manage their
interactions.

The techniques discussed in this paper pertain to system
specifications based on iterative synchronous dataflow
(SDF) graphs [9]. Iterative SDF programming of DSP ap-
plications has been researched widely in the context of mul-
tiprocessor implementation, and numerous commercial
DSP tools have been developed that incorporate SDF se-
mantics. Examples of such tools include SPW by Cadence,
COSSAP by Synopsys, and ADS by Hewlett-Packard.

In SDF, an application is represented as a directed graph
in which vertices (actors) represent computational tasks,
edges specify data dependences, and the numbers of data
values (tokens) produced and consumed by each actor is
fixed. Delays on SDF edges represent initial tokens, and
specify dependencies between iterations of the actors in it-
erative execution. For example, if tokens produced by the

th invocation of actor are consumed by the th
invocation of actor , then the edge contains two
delays. Actors can be of arbitrary complexity. In DSP de-
sign environments, they typically range in complexity from
basic operations such as addition or subtraction to signal
processing subsystems such as FFT units and adaptive fil-
ters. We refer to an SDF representation of an applications an
application graph.

In this paper, we use a form of SDF called homogeneous
SDF (HSDF) that is suitable for dataflow-based multipro-
cessor design tools. In HSDF, each actor transfers a single
token to/from each incident edge. General techniques for
converting SDF graphs into HSDF are developed in [9]. We
refer to a homogeneous SDF graph as a dataflow graph
(DFG). We represent a DFG by an ordered pair ,
where is the set of actors and is the set of edges. We
refer to the source and sink actors of a DFG edge by

 and , we denote the delay on by ,
and we frequently represent by the ordered pair

. We say that is an output edge of
; is an input edge of ; and is delayless if

. The execution time or estimated execution
time of an actor is denoted .

Mapping an application graph onto a multiprocessor ar-
chitecture includes three important steps — assigning ac-
tors to processors (processor assignment), ordering the
actors assigned to each processor (actor ordering), and de-
termining when each actor should commence execution. All
of these tasks can either be performed at run-time or at com-
pile time to give us different scheduling strategies.

In relation to the scheduling taxonomy of Lee and Ha
[8], we focus in this paper on the self-timed strategy and the
closely-related ordered transaction strategy. These ap-
proaches are popular and efficient for the DSP domain due

k A k 2+()
B A B,()

V E,()
V E

e
e()src e()snk e e()delay

e
e()src e()snk,() e

e()src e e()snk e
e()delay 0=

v t v()

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Mapping DSP Applications onto Self-timed Multiprocessors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Electrical and Computer
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

to their combination of robustness, predictability, and flex-
ibility [14]. In self-timed scheduling, each processor exe-
cutes the tasks assigned to it in a fixed order that is specified
at compile time. Before executing an actor, a processor
waits for the data needed by that actor to become available.
Thus, processors are required to perform run-time synchro-
nization when they communicate data. This provides ro-
bustness when the execution times of tasks are not known
precisely or when they may exhibit occasional deviations
from their compile-time estimates. Examples of an applica-
tion graph and a corresponding self-timed schedule are il-
lustrated in Figure 1.

The ordered transaction method is similar to the self-
timed method, but it also adds the constraint that a linear or-
dering of the communication actors is determined at com-
pile time, and enforced at run-time [15]. The linear ordering
imposed is called the transaction order of the associated
multiprocessor implementation. The transaction order,
which is enforced by special hardware, obviates the need
for run-time synchronization and bus arbitration, and also
enhances predictability. Also, if constructed carefully, it
can in general lead to a more efficient pattern of actor/com-
munication operations compared to an equivalent self-
timed implementation [6].

2 Modeling Self-timed Execution

In this section, we discuss two related graph-theoretic
models, the interprocessor communication graph (IPC
graph) [14, 15] and the synchronization graph
[14], that are used to model the self-timed execution of a

given parallel schedule for a dataflow graph. Given a self-
timed multiprocessor schedule for , we derive by in-
stantiating a vertex for each task, connecting an edge from
each task to the task that succeeds it on the same processor,
and adding an edge that has unit delay from the last task on
each processor to the first task on the same processor. Also,
for each edge in that connects tasks that execute
on different processors, an IPC edge is instantiated in
from to . Figure 2 shows the IPC graph that corresponds
to the application graph and self-timed schedule of Figure 1.

Vertices in these graphs correspond to individual tasks of
the application being implemented. Each edge in and

 is either an intraprocessor edge or an interprocessor
edge. Intraprocessor edges model the ordering (specified by
the given parallel schedule) of tasks assigned to the same
processor. Interprocessor edges in , called IPC edges,
connect tasks assigned to distinct processors that must com-
municate for the purpose of data transfer, and interprocessor
edges in , called synchronization edges, connect tasks
assigned to distinct processors that must communicate for
synchronization purposes.

Each edge in represents the synchroniza-
tion constraint

 for all , (1)

where and respectively represent the
time at which invocation of actor begins execution and
completes execution, and represents the delay as-
sociated with edge .

Initially, the synchronization graph is identical to
. However, various transformations can be applied to

 in order to make the overall synchronization structure
more efficient. After all transformations on are com-
plete, and can be used to map the given parallel
schedule into an implementation on the target architecture.
The IPC edges in represent buffer activity, and are im-
plemented as buffers in shared memory, whereas the syn-
chronization edges of represent synchronization
constraints, and are implemented by updating and testing
flags in shared memory. If there is an IPC edge as well as a
synchronization edge between the same pair of tasks, then a
synchronization protocol is executed before the buffer cor-
responding to the IPC edge is accessed to ensure sender-re-
ceiver synchronization. On the other hand, if there is an IPC
edge between two tasks in the IPC graph, but there is no
synchronization edge between the two, then no synchroni-
zation needs to be done before accessing the shared buffer.
If there is a synchronization edge between two tasks but no
IPC edge, then no shared buffer is allocated between the
two tasks; only the corresponding synchronization protocol
is invoked.

Any transformation that we perform on the synchroniza-
tion graph must respect the synchronization constraints im-

Figure 1. An example of an application graph and an asso-
ciated self-timed schedule. The numbers on edges
and denote nonzero delays.

6 8,()
6 9,()

2

3

1

4

6

5

7

8

9

2

3

Self-Timed Schedule

Proc 1: (1, 2, 3, 4, 6)

Proc 2: (5, 7, 8)

Proc 3: (9)

Gipc Gs

G Gipc

x y,() G
Gipc

x y

Gipc
Gs

Gipc

Gs

vj vi,() Gipc

start vi k,() end vj k vj vi,()()delay–,()≥ k

start v k,() end v k,()
k v

e()delay
e

Gs
Gipc
Gs

Gs
Gs Gipc

Gipc

Gs

plied by . If we ensure this, then we only need to
implement the synchronization edges of the optimized syn-
chronization graph. If and
are synchronization graphs with the same vertex-set and the
same set of intraprocessor edges (edges that are not syn-
chronization edges), we say that preserves if for all

 such that , we have

, (2)

where () represents the actor at the source
(sink) of edge ; and if there is no path from

 to in the synchronization graph , and if there is a path
from to , then is the minimum over all paths

 directed from to of the sum of the edge delays on .
The following theorem (developed in [14]) is fundamental
to synchronization graph analysis.

Theorem 1: The synchronization constraints (from (1)) of
 imply the constraints of if preserves .

Theorem 1 underlies the validity of a variety of useful
synchronization graph transformations, which include sys-
tematic removal of redundant synchronization edges; rear-
rangement of synchronization edges to trade-off latency and
throughput; graph transformations for use of low-overhead
synchronization protocols; and streamlined sizing of inter-
processor communication buffers [14].

3 Ordering Communication

The IPC graph is an instance of Reiter’s computation
graph model [11], also known as the timed marked graph
model in Petri net theory [10], and from the theory of such
graphs, it is well known that in the ideal case of unlimited
bus bandwidth, the average iteration period for the ASAP
execution of an IPC graph is given by the maximum cycle
mean (MCM) of , which is defined by

. (3)

The maximum cycle mean is thus the maximum over all
directed cycles of the sum of the task execution times in

 divided by the sum of the edge delays in . The quotient
in (3) is referred to as the cycle mean of the associated cycle

. A variety of efficient, low polynomial-time algorithms
have been developed for computing maximum cycle means
(e.g., see [5]).

IPC costs (estimated transmission latencies through the
multiprocessor network) can be incorporated into the IPC
graph model, and the performance expression (3), by ex-

plicitly including communication (send and receive) actors,
and setting the execution times of these actors to equal the
associated IPC costs. In this case, the performance estimate
(3) is limited by any underlying uncertainties in the actor
execution times, and run-time contention due to shared
communication resources. Nevertheless, it has proven to be
a useful estimate of performance during design space explo-
ration for multiprocessor DSP.

A similar data structure, which is useful in analyzing or-
dered transaction implementations, is Sriram’s ordered
transaction graph model [15]. Given an ordering

 for the communication actors in an
IPC graph , the corresponding ordered
transaction graph is defined as the directed
graph , where

, , (4)

, (5)

 for ,
and . (6)

Thus, an IPC graph can be modified by adding edges ob-
tained from the ordering to create the ordered transaction
graph.

A closely related data structure is the transaction partial
order graph that is computed from the IPC graph by
first deleting all edges in that have delays of one or
more, and then deleting all of the computation actors. The
transaction partial order graph represents the minimum set
of dependencies imposed among different processors by the
communication actors of the IPC graph. These dependen-
cies must be obeyed by any ordering of the communication
operations.

Gipc

G1 V E1,()= G2 V E2,()=

G1 G2
e E2∈ e E1∉

ρG1
e()src e()snk,() e()delay≤

e()src e()snk
e ρG x y,() ∞≡

x y G
x y ρG x y,()

p x y p

G1 G2 G1 G2

Gipc

MCM Gipc() max
cycle C in Gipc

t v()
v C∈
∑

C()Delay

=

C
C C

C

2r1

4

4s2

4s3

7r1

8r1

3

7

15

9

5

5

4

9

6

3

4

6

5

3

5

5

1

1

2

3

91

2

3

4s1

6

5

5s1

7

8

9r1

9

Figure 2. The IPC graph constructed from the appli-
cation graph and schedule of Figure 1.

Proc1 Proc2 Proc3

O o1 o2 …op, ,{ }=
Gipc Vipc Eipc,()=

Γ Gipc O(,)
GOT VOT EOT,()=

VOT Vipc= EOT Eipc EO∪=

EO op o1(,) o1 o2(,) o2 o3(,) … op 1– op(,), , , ,{ }=

oi oi 1+,()delay 0= 1 i p<≤
op o1,()delay 1=

O

GTPO
Gipc

Figure 4 shows an example of a transaction partial order
graph.

As described in Section 1, when the ordered transaction
strategy is implemented using a hardware method such as a
micro-controller that imposes the linear order, there is no
need for synchronization and contention is also eliminated.
Therefore, if the execution time estimates for the actors are
accurate or are true worst-case values, then the MCM of the
ordered transaction graph gives us an accurate estimate or
worst-case bound, respectively, of the iteration period of the
associated application graph under the ordered transaction
strategy. Such efficient, accurate performance assessment is

useful for design space exploration in general, and it is es-
pecially useful when implementing applications that have
real time constraints.

If interprocessor communication costs are negligible, an
optimal transaction order can be computed in low polyno-
mial time for a given self-timed schedule [15]. We call this
method of deriving transaction orders the Bellman Ford
Based (BFB) method since it is based on applying the Bell-
man-Ford shortest path algorithm to an intermediate graph
that is derived from the given self-timed schedule.

However, when IPC costs are not negligible, as is fre-
quently and increasingly the case in practice, the problem of
determining an optimal transaction order is NP-hard [6].
Thus, under nonzero IPC costs, we must resort to heuristics
for efficient solutions. Furthermore, the polynomial-time
BFB algorithm is no longer optimal, and alternative tech-
niques that account for IPC costs are preferable.

In the presence of non-negligible communication costs,
an efficient transaction order can be constructed with the
help of the transaction partial order graph described
earlier. The transaction partial order algorithm proceeds
by considering — one by one — each vertex of that
has no input edges (vertices in the transaction partial order
graph that have no input edges are called ready vertices) as
a candidate to be scheduled next in the transaction order. In-
terprocessor edges are inserted from each candidate vertex
to all other ready vertices in , and the corresponding
MCM is measured. The candidate whose corresponding
MCM is the least when evaluated in this fashion is chosen
as the next vertex in the ordered transaction, and deleted
from . This process is repeated until all communica-
tion actors have been scheduled into a linear ordering.

Figure 4 shows an example of an ordered transaction
graph that is derived using the transaction partial order al-
gorithm.

While the ordered transaction method is useful in its total
elimination of run-time synchronization and arbitration
overhead, the transaction partial order heuristic is able to
improve the performance beyond what is achievable by a
self-timed schedule even if synchronization and arbitration
costs are negligible compared to actor execution times [6].
Such performance benefit is achieved by strategic position-
ing of the communication operations in ways that do not
evolve from the natural evolution of self-timed schedules.

4 The Period Graph Model

Recall that given predictable actor execution times, one
can apply (3) to accurately assess system throughput in the
absence of any contention for communication resources.
However, with the use of shared buses, which are employed
in many embedded multiprocessor architectures, the accu-

5s1

2r1

4s1

4s2

4s3

7r1

8r1

9r1

Figure 3. The transaction partial order graph con-
structed from IPC graph of Figure 2.

2r1

4

4s2

4s3

7r1

8r1

3

7

15

9

5

5

4

9

6

3

4

6

5

3

5

5

1

1

1

2

3

91

2

3

4s1

6

5

5s1

7

8

9r1

9

1

Proc1 Proc2 Proc3

Figure 4. An example of an ordered transaction graph that i
is derived by the transaction partial order algorithm.

GTPO

GTPO

Gipc

GTPO

racy of estimates based on (3) can be expected to degrade
with the level of bus contention that results at run-time. For-
tunately, this does not affect the validity or utility of the
communication and synchronization management tech-
niques discussed in section 2, since these techniques operate
directly on the sets of interprocessor communication and
synchronization edges, without need for performance esti-
mation. Furthermore, this limitation is not encountered
when using the ordered transaction model (Section 3) since
contention is eliminated under this implementation model
regardless of the medium used for communication.

However, accurate performance assessment of self-
timed systems involving shared communication resources
in general must be able to handle contention on these re-
sources. One consequence of this contention is that under it-
erative execution that is self-timed, there is no known
method for deriving an analytical expression for the
throughput of the system, and thus, simulation is required to
get a clear picture of application performance. However,
simulation is computationally expensive, and it is highly
undesirable to perform simulation inside the innermost op-
timization loop during synthesis.

The period graph is an efficient estimator for the system
throughput that can be employed to avoid such inner-loop
simulation [2]. In particular, the reciprocal of the MCM of
the period graph can be used as an efficient estimate of the
throughput.

If communication resource contention is resolved deter-
ministically, and execution times are constant, then self-
timed evolution may lead to an initial transient state, but the
execution will eventually become periodic [14]. This holds
because the multiprocessor may be modeled as a finite-state
system, and thus, aperiodic behavior — which implies the
presence of infinitely many distinct states — cannot hold. In
DSP systems, although execution times are not always con-
stant, or known precisely, they typically adhere closely to
their respective estimates with high frequency. Under such
conditions, the periodic execution pattern obtained from the
estimated execution times provides an estimate of overall
system throughput based on the task-level estimates. Due to
the largely deterministic nature of DSP applications, such
system-level performance analysis, and optimization based
on task-level estimates is common practice in the DSP de-
sign community [8].

For self-timed systems, when we apply execution time
estimates to assess overall throughput, it is necessary to
simulate (using the execution time estimates) past the tran-
sient state until a periodic execution pattern (steady state)
emerges. Unfortunately, the duration of the transient may
be exponential in the size of the application specification
[14], and this makes simulation-intensive, iterative synthe-
sis approaches highly unattractive.

The period graph model greatly reduces the rate at which
simulation must be carried out during iterative synthesis.
Given an assignment of task execution times, and a self-
timed schedule, the associated period graph is constructed
from the periodic, steady-state pattern of the resulting sim-
ulation. The maximum cycle mean (MCM) of the period
graph (with certain adjustments) is then used as a computa-
tionally-efficient means of estimating the iteration period
(the reciprocal of the throughput) as changes are explored
within a neighborhood of .

The first step in the construction of the period graph is
the identification of the period from the simulator output.
This can be performed by tracing backward through the
simulation and searching for the latest intermediate time in-
stant at which the system state equals the state

 obtained at the end of the simulation (here, denotes
the simulation time limit). If no match is found, then the end
of the first period exceeds , and thus, the simulation needs
to be extended beyond . Otherwise, the region in the sim-
ulation profile (Gantt chart) that spans the interval
constitutes a (minimal) period of the simulated steady state.

Here, the system state contains the execution state
of each processor, which is either “idle” or is represented by
an ordered pair , where is the task being executed
at time , and denotes the time remaining until the current
invocation of is completed. The state also contains
the current buffer sizes of all IPC buffers, as well as any in-
formation (e.g., request queue status) that is used by the pro-
tocol for resolution of communication contention. Further
details on period graph extraction are developed in [1].

Figure 5(a) and Figure 5(b) illustrate an application
graph (a dataflow specification of an application) along
with a self-timed schedule; Figure 5(c) shows the periodic
steady state that results from the schedule of Figure 5(a) and
the execution time estimates shown in Figure 5(b); and Fig-
ure 5(d) shows the resulting period graph. The nodes in Fig-
ure 5(d) that contain diagonal stripes correspond to idle time
ranges in the period, and solid black circles on edges repre-
sent delays, which model inter-iteration dependencies. Note
that the steady state period may span multiple graph itera-
tions (2 in this example), and in the period graph, this trans-
lates to multiple instances of each application graph task.

For clarity in this illustration, we have assumed negligi-
ble latency associated with IPC. As described below, non-
negligible IPC costs can easily be accommodated in the pe-
riod graph model by introducing send and receive tasks at
appropriate points.

As illustrated in Figure 5, the period graph consists of all
the tasks comprising the period that was detected, with the
idle time ranges between tasks (including those that are
caused by communication contention) also treated as nodes
in the graph. The nodes are connected by edges in the order

ν

ν

ta S ta()
S tf() tf

tf
tf

ta tf,[]

S t()

A τ,() A
t τ

A S t()

that they appear in the period. An edge is placed from the
last node in the period for each processor to the first node in
the period. This edge is given a delay value of one (to model
the associated transition between period iterations), while
all of the other intraprocessor edges have delay values of ze-
ro. This is done for all the processors in the system. Our
model utilizes send and receive nodes for IPC. For each IPC
point, a send node is placed on the processor that is sending
data, and a corresponding receive node is placed on the pro-
cessor that will receive the data. The period graph is com-
pleted by adding an edge from each send node to its
corresponding receive node.

Once the period graph has been constructed, it can be
used as an efficient estimator for the throughput in any op-
timization for which the execution times of the nodes are
varied (e.g., when exploring migrations between hardware
and software, applying voltage scaling, or exploring alter-
native processor assignments in a heterogeneous multipro-
cessor). However, it is not obvious how one should adjust
the idle times in the period graph.

For this purpose, it is useful to separate the idle nodes
into two sets. When a node has the necessary data to exe-
cute, but is idle waiting for access to the bus, the associated
idle node is classified as a contention idle. When a node is
idle waiting for its predecessors’ data, the associated idle
node is classified as a data idle. The effects of contention
can be captured efficiently with high estimation accuracy
by ignoring (setting to zero) the data idles and leaving the
contention idles constant as the computation times are
scaled [2].

The period graph has been applied to the problem of
voltage scaling for power reduction of multiprocessor DSP
systems. It has been shown to increase overall power opti-
mization efficiency significantly when used to explore volt-
age variations within a limited range around a given voltage
vector (assignment of processor voltages) [2]. For larger
changes in node execution times, the fidelity (accuracy) of
the estimate decreases. In general, one would use the period
graph in a local search, for which the fidelity is acceptable,
and re-simulate and rebuild the period graph outside this re-
gion when necessary. This integration of period graph anal-
ysis with occasional re-simulation has been studied in [3].

5 Clusterization Function Representations

Clustering is often used as a front-end to multiprocessor
system synthesis tools. In this context, clustering refers to
the grouping of actors into subsets that execute on the same
processor. The purpose of clustering is thus to constrain the
remaining steps of synthesis, especially scheduling, so that
they can focus on strategic processor assignments.

In the context of embedded system implementation, one
limitation shared by many existing clustering and schedul-
ing techniques is that they have been designed for general
purpose computation. In the general-purpose domain, there
are many applications for which short compile time is of
major concern. In such scenarios, it is highly desirable to
ensure that an application can be mapped to an architecture
within a matter of seconds. The internalization algorithm
[12] and the dominant sequence algorithm [16] are exam-
ples of such low complexity algorithms.

Several probabilistic search approaches to multiproces-
sor scheduling have been proposed in the literature, such as
genetic algorithms, that exploit the increased compile time
tolerance available with embedded systems (e.g., see [1] for
a general discussion of genetic algorithms, and [4] for an
example of a recent genetic algorithm approach to schedul-
ing). However, these approaches typically have complex
solution representations in the underlying genetic algorithm
formulation, and require “repair” mechanisms that further
reduce their search efficiency.

Figure 5. An illustration of the period graph model.

A

B

E

F

H

I

CG

Proc 1
Proc 4

Proc 3
Proc 2

(a) Execution Times

A, C, H, F
B, E

G, I

: 3
: 4

: 2

A
B F

C G

E A

I H
C
B F

E

G
I H

14

(c)

A E A E

B BF F

C

C

G

G

I

H

I

H

(d)

(b)

The clusterization function representation is a mecha-
nism for encoding candidate clustering solutions that is
amenable to probabilistic search strategies, perhaps most
notably to genetic algorithms, but that avoids the asymme-
tries and repair requirements that plague the effectiveness
of conventional solution encodings that are used during
scheduling [7]. The clusterization function concept is cap-
tured by the following definition.

Definition 1: Suppose that is a subset of task graph
edges. Then denotes the clusterization
function associated with . This function is defined by:

, (7)

where is the set of communication edges and denotes
the th edge of this set.

When using a clusterization function to represent a clus-
tering solution, the edge subset is taken to be the set of
edges that are contained in clusters. An illustration is shown
in Figure 6.

This subset view of clustering develops a natural and ef-
ficient mappings into the framework of genetic algorithms.
Derived from the schema theory (a schema denotes a simi-
larity template that represents a subset of), canon-
ical genetic algorithms (which use binary representation of
solution spaces) provide near-optimal sampling strategies.
Furthermore, binary encodings in which the semantic inter-
pretations of different bit positions exhibit high symmetry
(e.g., with the clusterization function, each bit corresponds
to the existence or absence of an edge within a cluster) al-
low search techniques to leverage extensive prior research
on genetic operators for symmetric encodings rather than
forcing the development of specialized, less-thoroughly-
tested operators to handle the underlying non symmetric
representation. Accordingly, the clusterization function en-

coding scheme is favored both by schema theory, and sig-
nificant prior work on genetic operators. Furthermore, by
providing no constraints on genetic operators, clusterization
functions preserve the natural behavior of genetic algo-
rithms. Finally, a clusterization function encoding never
generates an illegal or invalid solution, and thus saves re-
pair-related synthesis time that would otherwise have been
wasted in locating, removing or correcting invalid solu-
tions.

The clusterization function approach has been applied to
develop a genetic algorithm that schedules DFGs to mini-
mize the latency of each DFG iteration (makespan). In this
approach, the initial genetic algorithm population is initial-
ized with a random selection of clusterization functions
(mappings from into) and the fitness is evaluated
using a modified version of list scheduling that abandons
the restrictions imposed by a global scheduling clock, as
proposed in [13]. This application of the clusterization func-
tion has been shown to significantly outperform existing
clustering techniques, including the internalization algo-
rithm, the dominant sequence algorithm, and randomized
versions of the internalization and dominant sequence algo-
rithms that were evaluated under equal amounts of synthe-
sis time (equal amounts of time available for probabilistic
search) [7].

Since clustering is widely applicable as a front-end to
many multiprocessor design contexts, and the CFA formu-
lation captures all possible clustering alternatives in an effi-
cient and elegant representation, it is suitable for use in
many types of tools for DSP system synthesis.

6 Summary

Designers of co-design and system synthesis tools for
DSP can exploit the use of predictable, coarse-grain pro-
gramming models, such as synchronous dataflow (SDF),
which are considered too restrictive for general-purpose de-
sign tools. However, at the same time, multiprocessor DSP
implementation is typically faced with an unusually com-
plex range of design constraints and objectives. To help ad-
dress this increasing tend toward high design complexity,
this paper has discussed several SDF-based intermediate
representations for self-timed implementation of multipro-
cessor DSP applications, including the interprocessor com-
munication graph for modeling the placement of IPC
operations; the synchronization graph for separating syn-
chronization from data transfer during IPC; the ordered
transaction and transaction partial order graphs for model-
ing and optimizing linear orderings of communication oper-
ations; the period graph for accurate design space
exploration under communication resource contention; and
the clusterization function concept for representing proces-
sor assignments during the scheduling process.

β
fβ E: 0 1{ , }→

β

f ei()
0 if ei β∈()

1 otherwise

=

E ei
i

β

= {}

= {0, 6}
 {2, 4}

= {0, 2, 4, 6}

βa

βb
∪

Figure 6. (a) Original task graph and corresponding clus-
terization function ; (b) a clustering of the task graph
and the resulting clusterization function; (c) the associ-
ated subsets of “zeroed edges” in this clustering.

fβ

β

0 1,{ }n

E 0 1,{ }

Acknowledgements

Portions of this research were sponsored by the U. S. Na-
tional Science Foundation (9734275), the U. S. Army Re-
search Laboratory (under Contract No. DAAL01-98-K-
0075 and the MICRA program), and the Defense Advanced
Research Projects Agency (MDA972-00-1-0023, through
Brown University).

References
[1] T. Back, U. Hammel, and H-P Schwefel. Evolutionary com-

putation: Comments on the history and current state. IEEE
Transactions on Evolutionary Computation, 1(1):3-17, April
1997.

[2] N. K. Bambha and S. S. Bhattacharyya, “A Joint Power/Per-
formance Optimization Technique for Multiprocessor Sys-
tems Using a Period Graph Construct,” Proceedings of the
International Symposium on Systems Synthesis, pages 91-97,
September 2000.

[3] N. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hy-
brid search strategies for dynamic voltage scaling in embed-
ded multiprocessors. In Proceedings of the International
Workshop on Hardware/Software Co-Design, pages 243-
248, Copenhagen, Denmark, April 2001.

[4] R.C. Correa, A. Ferreira, P. Rebreyend, “Scheduling Multi-
processor Tasks with Genetic Algorithms,” IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 0, 825-837,
1999.

[5] A. Dasdan and R. K. Gupta, “Faster Maximum and Minimum
Mean Cycle Algorithms for System-Performance Analysis,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(10):889-899, October 1998.

[6] M. Khandelia and S. S. Bhattacharyya. Contention-conscious
transaction ordering in embedded multiprocessors. In Pro-
ceedings of the International Conference on Application Spe-
cific Systems, Architectures, and Processors, pages 276-285,
Boston, Massachusetts, July 2000.

[7] V. Kianzad and S. S. Bhattacharyya. Multiprocessor cluster-
ing for embedded systems. In Proceedings of the European
Conference on Parallel Computing, pages 697-701,
Manchester, United Kingdom, August 2001.

[8] E. A. Lee and S. Ha, “Scheduling Strategies for Multiproces-
sor Real Time DSP,” Proceedings of the Global Telecommu-
nications Conference, November 1989.

[9] E.A. Lee, D.G. Messerschmitt, “Static Scheduling of Syn-
chronous Dataflow Programs for Digital Signal Processing”,
IEEE Transactions on Computers, February, 1987.

[10] J. L. Peterson, Petri Net Theory and Modeling of Systems,
Prentice-Hall Inc., Englewoods Cliffs, New Jersey, 1981.

[11] R. Reiter, “Scheduling Parallel Computations,” Journal of
the Association for Computing Machinery, Vol. 15, No. 4, pp.
590-599, Oct. 1968.

[12] V. Sarkar. Partitioning and Scheduling Parallel Programs
for Multiprocessors. MIT Press, 1989.

[13] G. C. Sih, E. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor archi-
tectures.” IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 2, 1993.

[14] S. Sriram and S. S. Bhattacharyya, Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker, Inc.,
2000.

[15] S. Sriram and E. A. Lee, “Determining the Order of Processor
Transactions in Statically Scheduled Multiprocessors,” Jour-
nal of VLSI Signal Processing, March, 1997.

[16] T.Yang, A.Gerasoulis, “DSC: scheduling parallel tasks on an
unbounded number of processors,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 5, 951-967, 1994.

	Abstract
	1 Background
	Figure 1. An example of an application graph and an associated self-timed schedule. The numbers o...

	2 Modeling Self-timed Execution
	for all , (1)
	, (2)
	Theorem 1: The synchronization constraints (from (1)) of imply the constraints of if preserves .

	3 Ordering Communication
	. (3)
	Figure 2. The IPC graph constructed from the application graph and schedule of Figure 1.

	, , (4)
	, (5)
	for , and . (6)
	Figure 3. The transaction partial order graph constructed from IPC graph of Figure 2.
	Figure 4. An example of an ordered transaction graph that is is derived by the transaction partia...

	4 The Period Graph Model
	Figure 5. An illustration of the period graph model.

	5 Clusterization Function Representations
	Definition 1: Suppose that is a subset of task graph edges. Then denotes the clusterization funct...
	, (7)
	Figure 6. (a) Original task graph and corresponding clusterization function ; (b) a clustering of...

	6 Summary
	[1] T. Back, U. Hammel, and H-P Schwefel. Evolutionary computation: Comments on the history and c...
	[2] N. K. Bambha and S. S. Bhattacharyya, “A Joint Power/Performance Optimization Technique for M...
	[3] N. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid search strategies for dynami...
	[4] R.C. Correa, A. Ferreira, P. Rebreyend, “Scheduling Multiprocessor Tasks with Genetic Algorit...
	[5] A. Dasdan and R. K. Gupta, “Faster Maximum and Minimum Mean Cycle Algorithms for System-Perfo...
	[6] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction ordering in embedded m...
	[7] V. Kianzad and S. S. Bhattacharyya. Multiprocessor clustering for embedded systems. In Procee...
	[8] E. A. Lee and S. Ha, “Scheduling Strategies for Multiprocessor Real Time DSP,” Proceedings of...
	[9] E.A. Lee, D.G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for Digital...
	[10] J. L. Peterson, Petri Net Theory and Modeling of Systems, Prentice-Hall Inc., Englewoods Cli...
	[11] R. Reiter, “Scheduling Parallel Computations,” Journal of the Association for Computing Mach...
	[12] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, 1989.
	[13] G. C. Sih, E. Lee, “A compile-time scheduling heuristic for interconnection-constrained hete...
	[14] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization....
	[15] S. Sriram and E. A. Lee, “Determining the Order of Processor Transactions in Statically Sche...
	[16] T.Yang, A.Gerasoulis, “DSC: scheduling parallel tasks on an unbounded number of processors,”...

	annot: In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, November 2001. Invited paper.

